27 research outputs found

    Utilizing ethnic-specific differences in minor allele frequency to recategorize reported pathogenic deafness variants

    Get PDF
    Q1Q1ArtĂ­culo original445-453Ethnic-specific differences in minor allele frequency impact variant categorization for genetic screening of nonsyndromic hearing loss (NSHL) and other genetic disorders. We sought to evaluate all previously reported pathogenic NSHL variants in the context of a large number of controls from ethnically distinct populations sequenced with orthogonal massively parallel sequencing methods. We used HGMD, ClinVar, and dbSNP to generate a comprehensive list of reported pathogenic NSHL variants and re-evaluated these variants in the context of 8,595 individuals from 12 populations and 6 ethnically distinct major human evolutionary phylogenetic groups from three sources (Exome Variant Server, 1000 Genomes project, and a control set of individuals created for this study, the OtoDB). Of the 2,197 reported pathogenic deafness variants, 325 (14.8%) were present in at least one of the 8,595 controls, indicating a minor allele frequency (MAF) >0.00006. MAFs ranged as high as 0.72, a level incompatible with pathogenicity for a fully penetrant disease like NSHL. Based on these data, we established MAF thresholds of 0.005 for autosomal-recessive variants (excluding specific variants in GJB2) and 0.0005 for autosomal-dominant variants. Using these thresholds, we recategorized 93 (4.2%) of reported pathogenic variants as benign. Our data show that evaluation of reported pathogenic deafness variants using variant MAFs from multiple distinct ethnicities and sequenced by orthogonal methods provides a powerful filter for determining pathogenicity. The proposed MAF thresholds will facilitate clinical interpretation of variants identified in genetic testing for NSHL. All data are publicly available to facilitate interpretation of genetic variants causing deafness

    An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge

    Get PDF
    There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. RESULTS: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. CONCLUSIONS: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups

    The Effect of Ramadan and COVID-19 on the Relationship between Physical Activity and Burnout among Teachers

    No full text
    The objective of this study was to explore the effect of COVID-19 and Ramadan on physical activity (PA) and burnout in teachers and the relationship between them. A total of 57 secondary school teachers from public education centers participated in the present study. They were aged between 29 and 52 years. To determine the effect of Ramadan and COVID-19 on PA and burnout, participants completed the online questionnaires before COVID-19, one week before Ramadan and during the second week of Ramadan. The International Physical Activity Questionnaire-BREF and the Maslach Burnout Inventory-Human Services Survey were used to assess PA intensities and burnout, respectively. The data revealed that total PA (p p p p p p p p p < 0.05). In addition, low to high correlations were observed between PA intensities and burnout subscales, except for the correlation between depersonalization and all PA intensities. In conclusion, Ramadan intermittent fasting along with PA was highly recommended for teachers and the general population to improve positive emotions and general health

    Founder mutations in Tunisia: implications for diagnosis in North Africa and Middle East

    No full text
    Abstract Background Tunisia is a North African country of 10 million inhabitants. The native background population is Berber. However, throughout its history, Tunisia has been the site of invasions and migratory waves of allogenic populations and ethnic groups such as Phoenicians, Romans, Vandals, Arabs, Ottomans and French. Like neighbouring and Middle Eastern countries, the Tunisian population shows a relatively high rate of consanguinity and endogamy that favor expression of recessive genetic disorders at relatively high rates. Many factors could contribute to the recurrence of monogenic morbid trait expression. Among them, founder mutations that arise in one ancestral individual and diffuse through generations in isolated communities. Method We report here on founder mutations in the Tunisian population by a systematic review of all available data from PubMed, other sources of the scientific literature as well as unpublished data from our research laboratory. Results We identified two different classes of founder mutations. The first includes founder mutations so far reported only among Tunisians that are responsible for 30 genetic diseases. The second group represents founder haplotypes described in 51 inherited conditions that occur among Tunisians and are also shared with other North African and Middle Eastern countries. Several heavily disabilitating diseases are caused by recessive founder mutations. They include, among others, neuromuscular diseases such as congenital muscular dystrophy and spastic paraglegia and also severe genodermatoses such as dystrophic epidermolysis bullosa and xeroderma pigmentosa. Conclusion This report provides informations on founder mutations for 73 genetic diseases either specific to Tunisians or shared by other populations. Taking into account the relatively high number and frequency of genetic diseases in the region and the limited resources, screening for these founder mutations should provide a rapid and cost effective tool for molecular diagnosis. Indeed, our report should help designing appropriate measures for carrier screening, better evaluation of diseases burden and setting up of preventive measures at the regional level.</p

    In Reference to Temporal Bone Imaging in

    No full text

    Intracellular Regulome Variability Along the Organ of Corti: Evidence, Approaches, Challenges, and Perspective

    No full text
    The mammalian hearing organ is a regular array of two types of hair cells (HCs) surrounded by six types of supporting cells. Along the tonotopic axis, this conserved radial array of cell types shows longitudinal variations to enhance the tuning properties of basilar membrane. We present the current evidence supporting the hypothesis that quantitative local variations in gene expression profiles are responsible for local cell responses to global gene manipulations. With the advent of next generation sequencing and the unprecedented array of technologies offering high throughput analyses at the single cell level, transcriptomics will become a common tool to enhance our understanding of the inner ear. We provide an overview of the approaches and landmark studies undertaken to date to analyze single cell variations in the organ of Corti and discuss the current limitations. We next provide an overview of the complexity of known regulatory mechanisms in the inner ear. These mechanisms are tightly regulated temporally and spatially at the transcription, RNA-splicing, mRNA-regulation, and translation levels. Understanding the intricacies of regulatory mechanisms at play in the inner ear will require the use of complementary approaches, and most probably, a combinatorial strategy coupling transcriptomics, proteomics, and epigenomics technologies. We highlight how these data, in conjunction with recent insights into molecular cell transformation, can advance attempts to restore lost hair cells

    Adult gaucher disease in southern Tunisia: report of three cases

    No full text
    Abstract Background Gaucher disease (GD) is the most frequent lysosomal storage disorder; type 1 is by far the most common form. It is characterized by variability in age of onset, clinical signs and progression. It is usually diagnosed in the first or second decade of life with the appearance of bone pains, splenomegaly and thrombocytopenia, but the disease may be diagnosed at any age between 1 and 73 years. In the present study, we report 3 cases with late onset of GD in whom the disease was a surprise finding including one patient with Parkinson disease. This late onset is described as an adult form of Gaucher disease. Findings Molecular investigation showed mutational homogeneity in Tunisian adult patients suffering from GD. Indeed, all patients carry the p.N370S mutation: two patients at a homozygous state and one patient at compound heterozygous state. Conclusion The p.N370S mutation presents a large variability in the onset of the disease and its clinical manifestation supporting the view that GD should be considered as a continuum phenotype rather than a predefined classification.</p

    \u3ci\u3eGrxcr2\u3c/i\u3e is required for stereocilia morphogenesis in the cochlea

    Get PDF
    Hearing and balance depend upon the precise morphogenesis and mechanosensory function of stereocilia, the specialized structures on the apical surface of sensory hair cells in the inner ear. Previous studies of Grxcr1 mutant mice indicated a critical role for this gene in control of stereocilia dimensions during development. In this study, we analyzed expression of the paralog Grxcr2 in the mouse and evaluated auditory and vestibular function of strains carrying targeted mutations of the gene. Peak expression of Grxcr2 occurs during early postnatal development of the inner ear and GRXCR2 is localized to stereocilia in both the cochlea and in vestibular organs. Homozygous Grxcr2 deletion mutants exhibit significant hearing loss by 3 weeks of age that is associated with developmental defects in stereocilia bundle orientation and organization. Despite these bundle defects, the mechanotransduction apparatus assembles in relatively normal fashion as determined by whole cell electrophysiological evaluation and FM1-43 uptake. Although Grxcr2 mutants do not exhibit overt vestibular dysfunction, evaluation of vestibular evoked potentials revealed subtle defects of the mutants in response to linear accelerations. In addition, reduced Grxcr2 expression in a hypomorphic mutant strain is associated with progressive hearing loss and bundle defects. The stereocilia localization of GRXCR2, together with the bundle pathologies observed in the mutants, indicate that GRXCR2 plays an intrinsic role in bundle orientation, organization, and sensory function in the inner ear during development and at maturity
    corecore